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In this paper we develnp a Fourier pseudospectral method with a restrain operator for the 
Korteweg-de Vries equation. We prove the generalized stability of the schemes and give con- 
vergence estimations depending on the smoothness of the solution of the P.D.E. 0 1986 

Academic Press, Inc. 

Recent publications in spectral methods for nonlinear partial differential 
equations provide a new potent solution technique (xc [l-9]). In many of the 
relevant papers, pseudospectral methods are used, because they are more efficient 
than spectral methods (see [l&15]). But sometimes pseudospectral methods have 
a nonlinear instability which causes an anomalous increase of energy, or weakens 
the nonlinearity of the solution. In order to eliminate these phenomena, filtering or 
smoothing techniques are used (see [ 16-181). 

In this paper a restrain operator R is used to develop a semi-discrete or fully dis- 
crete Fourier pseudospectral method for the Korteweg-de Vries (K.d.V.) equation. 
Generalized stability and convergence estimates depending on the smoothness of 
the solution of the P.D.E. are proved. 

I. THE SCHEMES 

Consider the K.d.V. equation with periodic boundary condition: 

a,u+uu,+u,,,=o, - cu<x<i;o,O<t<T, 

~(x+l,t)=u(x,t), -~<.x<co,O~d~T, (1.1) 

4x9 0) = %(X)9 -co<x<co. 

Let x E I= (0, l), L*(1) with the inner product (.’ . ) and the norm )I.II. For any 
positive integer n, the semi-norm and the norm of W(1) are denoted by 1.1 n and 
II . IIn, respectively. Let C;“,,(I) be the set of infinitely differentiable functions with 
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period 1, defined on R. H;p,(I) is the closure of Ci”p,(Z) in N”(I). For any real 0 > 0, 
detine &,,(I) by complex interpolation between H:;!(I) and H[;~+‘(B) where [G] 
denotes the largest integer which is smaller than o. 

I$,(Z)= ‘CfL2(Z) f (1+lkj)2”(Okj2<m0, U(x)=U(~fl) 
I k= -x, I 

where 0, = (U, eznikx). 
Let A be a Banach space. C(0, T; A) is a set of strongly continuous functions 

from [O, T] to A and L2(0, T, A) is a set of strongly measurable functions u(t) from 
(0, T) to A satisfying 

Other similar notations have the usual meanings. 
For any positive integer N, set 

vN=span{e2”‘k”I lkl <IV) 

and let ti,,, be a subspace of vN of real-valued functions. 
Let h = 1/(2N f 1) be the mesh size in variable x and xj= jh (j= 0, I,..., 2N). T 

discrete inner product and norm are defined by 

Let P,: L*(1) -+ IJ,,, be the orthogonal projection operator, i.e., 

(PA% cp) = (K VI, VP E VI+, 

and pc: C(1) -+ vN be the interpolation operator such that 

Pc4-q = 4xJ OGj62N. 

(1.2) 

(1.3) 

For any U, u E C(t), we can prove [ 161 

Approximation to (1.1) by Fourier pseudospectral methods directly needs the 
estimation 

I(%, W)Nl = I(Pc(~~,), PcW)l d Cll4’,= ~ll4*, VUEV,, (1.5) 

where C is a constant depending only on w in vN, in order to get the stability and 
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convergence in L2-norm. But (1.5) may not be true. As an example, we consider the 
functions 

u> = 1 - 2 sin 2nx = 1 + i(e2”‘” - e-2nix), 

u = C akeznikx, 
Ikl < N 

and obtain from (1.4) 

(uux> w)N = (PN(uux)~ w) + ((PC- PN)(%), w). 

Since 

and 

l((~c-~N)(UUx)~ w)l = I( 1 

Ikl < N 

c 2~i~a~akLle2”ikx~ -)I 

I/I<N 
lk--II>N 

=/2nni{~aNa-l-N(-i)+(-N)a-Nal+N~}I 

= 27cnNlah + a?,], 

(1.5) can not be true. Obviously the trouble is only due to the higher frequencies. 
So we use the operator R = R(y) defined below to improve the scheme. 

Guo Ben-yu [7, 81 pointed out that a better result can be obtained in solving 
numerically P.D.E. by using the generalized Fourier method (see [ 191). Let ?/ 3 1 
and 

u = C akeznikx, 

Ikl <N 

we define R = R(y) by 

Ru= C ,,,,,( 1 -($y) akeznikx. Cl.61 

In order to approximate the nonlinear term UU, reasonably we define the 
operator J,: vN x vN + vN as 

J&u> VI= f~c(uxRv) f f(pc(uRv))r 

If U, v, and w E d,, then we have from (1.4) 

(J,(u, ~1, WI+ (JAW, ~1, u)= 0. (1.7) 
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The semi-discrete pseudospectral method for the pro lem (1.1) is to fin 
such that 

at+ + Jc(uc: UC) + ~cxsx = 0, -m<x<co,t> 
(1.8) 

%4x, 0) = PcUo(Xh -co<<<<. 

y (I.?), the solution of (1.8) for all t 3 0 satisfies 

Ilu&)ll = llMN 

Let z be the mesh size in variable t. Denote u”(x) = u(x, kz) by uk. 

1 U+(u’--Ukj 
z 

and 

The fully discrete pseudospectral method for problem (1.1) is to find zr in i:,V 
such that 

If 6, = 6, = f: then 

II. THE MAIN THEORETICAL RESULTS 

irst consider the generalized stability of scheme (1.8) (the definition can be 
found in [20]). If uC and the right term in (1.8) have errors ii and 7~ d,N, respec- 
tively, then 

THEOREM 1. If e > 0, then there exists a positioe ~~~st~~t C depending oiz 
lld LyO,T;.+~+“) such that for any t < T, 

. 

Next consider the convergence of (1.8). 
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THEOREM 2. If? 3 o 2 3 and u E C(0, T; H&,(I)), then there exists a positive con- 
stant C depending on (/u/l Lm(O,-..c, such that for any t < T, 

I(u,(t) - u(t)/1 =$ CN’-“. 

Now consider the generalized stability of (1.9). Suppose that U: and the right 
term have, respectively, the error iik and 7 E ti,,,, then 

ii: + J&ik + 6&, u; + fik) -t- J&u: + G,zuff,, iik) + ;h, + G,zii’& =Tk. (2.2) 

Let 
12 ~ 1 

p”= Il~“/12+~ c lI.7”ll’ 
k=O 

and 
n-l 

En= Ili7112+~O~2 1 liii;II”. 
k=O 

THEOREM 3. If 6, = 6, > 4, zN2 < d < co, and E > 0, then there exists a positive 
constant C depending on llluclli 3,2+E such that for all nz < T, 

En 6 cpnecnz. 

THEOREM 4. If d2 > 4, zN3 < d< co, and E > 0, then there exist positive constants 
C and 6 depending on IIIucIJ1 3,2+ E such that when prT”’ < 6 and nz d T, 

E” < cpnernr. 

THEOREM 5. If u E C1(O, T; H;,,(I)) n C(0, T; H&)(I)) (y 3 F > 3) and d,u E H’ 
(0, T; L2(Z)), then there exists a positive constant C depending on u such that for any 
nz 6 T, 

(i) ifS,=6,>4 and zN2<d< 00, then 

IIu;-u*lJ 6C(z+N’-“}; 

(ii) if 6, > f, zN3 <d < co, and z + N’ Pu suitably small, then 

IIu:-zfll <C{z+N’-“}. 

III. NUMERICAL RESULTS 

EXAMPLE 1. Consider the KortewegAe Vries equation 

a,~++l+cp)(Px+(112/2)cpx,,=0, 
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which has the solitary wave 

q(x, t) = u. + a sech2[(a/bA2)“2 (x - ct)], 
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(3.1) 

where 

c = 1 + Ug + a/3. 

Schamel and Elsasser [lo] computed the above problem using both the spectral 
method (SM) and the pseudospectral method (PSM). The time integration used a 
stable fourth-order integration procedure. In Fig. 1, the solution with 2 = lo-‘: 
a = 0.2, and 

u. = -214ba)"2 tanh[ja/24)“2/iU] 

(so that l: ~(x, t) dx = 0 for all times) is shown at t = 1.25 corresponding to 10 
time steps. Initially the soliton was centered at x = -0.5 (which corresponds to 
x = 0.5 because of periodicity). The SM solution agrees with the analytical solution 
q (full curve), but the PSM solution q1 (dashed curve) has a large error due to the 
aliasing interaction. 

By letting u = 1 + q, we run the example using scheme (1.9) with 6, = 6, = f and 
y = 5. The soiution (p2 is shown in Fig. 1 (dotted curve). The error agrees with the 
convergence estimation in Section II (see Table I). Four time iterations per time 
step are required for the nonlinear term. 

EXAMPLE 2. Consider the problem 

a,u + puu, + EU,,, = 0, o<,x<2, o<t< r, 

u(x, 0) = 3C sech2(Ax -t D), 06xd2. 
(3.2) 

The solution of (3.2) is 

u(x, t) = 3C sech2(Ax - Bt + D), 

FE. 1. The Korteweg-de Vries soliton at t= 1.25, q is the solitary wave (3.1). qI is computed with 
FTM in [IO] (dashed line, h = l/32). qz is computed with (1.9) (dotted line, iz = l/16). 
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TABLE I 

The L*-Error and La-Error of Scheme (1.9) at Time T, 
z = 0.00125, h = l/16 

T Lz-error L--error 

0.25 0.1970 x 10-Z 0.5728 x 1O-2 
0.50 0.3298 x 1O-2 1.2137 x 10m2 
0.75 0.4469 x 10 -z 1.3146 x 10m2 
1.00 0.5596 x 1O-2 1.8146 x 1O-2 
1.25 0.6754 x lo-* 1.9735 x 10-2 

where 
A = +(/K/E)‘~‘, B = f/?C(j3C/~)‘~‘. 

For parameter values 

c = 0.3, D= -6, P= 1, E = 4.84 x 1 

the calculation is carried out for x E [0, 21. 

The Leo-error of both the Hopscotch difference scheme 
scheme (1.9) with y = 10 and 6i = d2=0.6 are shown in Ta 
scheme (1.9) gives better results than the Hopscotch scheme. 

IV. SOME LEMMAS 

Op4, 

(see [22]) and the 
bles 11 and III.- The 

In order to prove the theorems in Section II, we need the following lemmas, the 
constants in which are independent of N and the function u and may be different in 
different cases. 

LEMMA 1 [16]. IfO<p<o and UEN&JI), then 

TABLE II 

The Maximum Errors at Time T, z = 0.025, h = l/16 

T Hopscotch scheme 

0.25 0.1533 
0.50 0.2044 
0.75 0.2717 
1.00 0.2969 

Scheme (1.9) 

0.0343 
0.0458 
0.0627 
0.0797 

(4.1) 

(4.2) 
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TABLE III 

The Maximum Errors at Time T, T = 0.0005, h = l/32 

T Hopscotch scheme Scheme (1.9) 

0.25 2.231 x iOm2 0.5997 x 10~ 3 
0.50 3.764 x 1o-2 1.228 x 10-j 
0.75 5.003 x 1o-2 2.873 x 10-3 
1.00 6.723 x 10-l 2.637 x IV3 

LEMMA 2 (Inverse Inequality) [ 161. If 0 < ,u < 0 and u E uN, then 

Ilull, G cN"-p lI4lp. 

LEMMA 3. If u E N’(I), then 

IIUIIL” < cIIuII”* Ilull iI’. (4.6) 

Zl= c 
2nikx 

ake , 
lkl <N 

then 

d2C’ C 12nk12~‘~27&i2”/271k/ p20jak)2 
lkl< N 

< CN2(‘p”) C ~2plk~*~iak/* 
Ikl c N 

= CJp(-Jlul$ 

Roof of (4.8) follows from (4.7) and Lemma 1. 

5X1/65/1-9 
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Now let 

and 

l/l= c akezxikx 
lkl6N 

v = c bke2r”ikx, 
Ikl C N 

Assume 

ak+2N+1=ak, b -b k+ZN+l- k 

and define the circle convolution 

u * u= c 1 aibkp,e2nikx. 

It is easy to show that u * v = u * u. 

LEMMA 5. Ifu,v~v~ and weti,, then 

p,(uu) = u * v, 

(u * w, v) = (?A, w * u). 

Proof. It is sufficient to prove 

u * v(x,) = u(x,) v(x,), O<j<2N. 

Since 

(4.11) follows. Then from (4.11) and (1.4), 

c” * w, v, = (Pc(~~), p,v) = (“w, O)N 

= (u, WV)N = (U, w * v). 

(422) 

(4.10) 

(4.1:;) 

(4.12) 

LEMMA 6. For any E > 0, if u, v E vN and w E H$+ “(I), then 

I(ux * Ru> WI+ (u * Ru,> WY d C,Y llwl/332+~II~ll I/~//, 

I(u, * Ru, w)- (u * Ru,, w)I d C,Y lI+41~~~+eI142, 

where R=R(y) (y&l) is defined by (1.6). 
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Proof Assume that ak and bk are the coeffkients of u and u respectively such 
that they have been extended as (4.9). Let 

w= f cke2nikx 

k= --m 

then 

For any lk 

pNw= C Ckeznikx. 
lkl <N 

Y~,~ = k-i + 2N -?- 1, if k -I < -N, 

=k-I, if jk - ij d IV> 

=k-I-(2N+ l), if k-l>N. 

Ciearly rmk,-)= -Ye,!. Since 

(u, * Rv, w) = (u, * Rv, PNW) 

and 

then 

I, s (u, * Ro, w) + (u * Rux, w) 

where 
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then 

In order to estimate / g,,,l for the three following cases, only the case of 0 6 I< N 
is considered because g _ k, _ I = - gk, [. 

Case 1. Ik - II d N, then 

igk,ll = 
1 + Ikl 

Case 2. k-1-c -Nand so O<N-I< -k=Jkl, then 

lg ,=(N-~)(2N+l+k)<Ikl(2N+1-Ikl)<2 
k.1 NC1 + lk0 ’ (l+lkl)N ” 

Case 3. k - 1> N. This is contrary to 13 0 and need not be considered. 
Therefore 

Ifk,li d 7 / gk,,l d 2?4 Vlkl, Id 6N, 

and from (4.15) 

~479 C (l+lkl 

= 47v lbll Ilull c 
lkl C N 

(1 + lk/)p(1’2+E) (1 + /k/)3’2+c \Ckl 

~47wll Ilull { c (1 + lkl)p(1+2”1 
Llkl < N 

6 GY lI~ll3,2+E Ilull iI49 

l/2 
c (1 + lk/)2(3’2+E) ICk12 

Ikl <N 

(4.16) 

which completes the proof of (4.13). 
On the other hand. since 

(u, * Ru, w) = (u, * Ru, pNw) 
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and 

then 

where 

Let 
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Kk,~~~(fl-I~~)~il+ljl!, 

then 

i.fk,li d Y I.&.!/> V (kj, jl, d iQ. 

In order to estimate (gk,,/ for the three following cases, only the case of 0 < i < N 
is considered because g_,,-, = -g,,,. 

Case 1. 0616k, then 

Case 2. k<ldN+k and so O<l-k=N, then 

/g , =WU-~~l= llkl <1 
k,l N(l+ ,k,) N(l+ ik,)’ ’ 

Case 3. i>N+k, so k-I<Nand O<N-I< -k= IQ, then 

,g ,~lI-(2N+l+k-~)l=/2(N-~i)i1-lkli 
k,li . 1+ Ikl I+ PI 

< max 
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Therefore 

Ifkll 6 Y I &A 6 2Y> Vlkl, (4 B N. 

Similarly using (4.16) 

IZ2l 6 Q+413,2+elI~l12> 

which completes the proof of (4.14). 
The next result follows immediately from (4.13) and (4.14). 

LEMMA 7. If E>O and WE Hf$+“(I), then 

I(ux * Ru> w)l G C,Y IIw/13,2+A42> VUEVN. (4.17) 

V. THE PROOFS OF THE THEOREM 

We now prove the theorems in Section II. 
By (4.11), rewrite 

J,(u, v) = fux * Rv + i(u * Rv),. 

Proof of Theorem 1. By taking the inner product of (2.1) with 2ii and using 
(1.7) 

Let 8 > 0. Since 

8, 11412 + 2(Jc(%, a4 = 2(J: 4. 

and 

I (UC, * Rii, “u)l = I(ucxRii, ii),,J 

d II~L~ IIWIN ll~ll~~~~l/~cll~,2+~ 11412, 

then 

I((u, * W,, 41 = l(u, * Rfi, W 

= I(fi,*Rku,)l ~c,~lI~cll~,2+elI~ll~> 

Therefore 

a, Ilfi(t)ll’~ cc-9 Il%IlL”(O,T;H~/~+-) llf4t)l12 + lI7(tNl’, 

(5.1) 

and the conclusion of Theorem 1 follows. 
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Proof of Theorem 2. Let w=p,u and e”=u,-w and using (1.1) and (1.8) 
produces 

where 

(5.2) 

f = f CP&% + (u2)x) - p,(wxRw) - (P,.b~R~4)J. 

From Lemma 1 and Lemma 4 

and 

SO 

Similarly 

Since 

/lwxRw-pc(wxRw)II <c’N~-~Iw, wI,~~~cN~-~/IuI/~, 

IIPN~~~,I - ~,(wxRw)ll d 44.) IV-“. 

IjpNu2 - u2)I d cN-~I~u~~~, 

ll~2-w41 <cN-gllu/l.~lul,, 

llwu-wRwll ~~N-‘7lw1l~mI~/~., 

IjwRw-pp,(wRw)ll <cN-“IlulJ$. 

Alss 

IIPN(u*L - (~c(wRw)),ll = IP,G* - p,(wRw)lI 

6 cNllp,v~~- pc(wRw)ll 6 ~(IlulloB N1 --O, 

llfll ~+~L~~o,T;H~~~ N”-“. (5.3) 

ll~(O)ll d llP&o-%ll + II%-PP,%ll ~c-~-~“l%l.. (5.4) 

Finally, apply Theorem 1 to Eq. (5.2) and use Lemma 1 and the triangle 
inequality to complete the proof. 
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Proof of Theorem 3. Taking the inner product of (2.2) with 2fik and rnzii: 
(m > O), respectively, produces 

and 

Let &I > 0. Combining (5.5) with (5.6) gives 

((iik(lf+~(m-l---ll) l(i$(j2+ i Fi 
i= 1 

< I\Gkl\2 + (1 + Trn2/4E,) //jy2, (5.7) 

where 

F, = 2(J,(u’: + 6 1 zu$, z?), iik), 

F,=mz(J,.(uf!+6,zu~,, ii”), ii:), 

F, = z(m - 26,)(J,(iik, ut + i?), i$), 

F4 = z(m - 26,)(iif, ii”,,,). 

Estimating 1 FII using an argument similar to (5.1) produces 

Substituting the above estimation into (5.7) results in 

lI~kl\~+~(m-l-4~~)IIii~lj2~~(ll1uclll3,2+~)((1+e;1m2zN2)lliikll2 

+&,‘(m-226,)2TN2(jjijk(j2+N//ijk(14) 

+E;‘(m - 2~?,)~ zN6 ((iikl12 + ll~112}. (5.8) 
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y choosing m > 1 properly and E~ suitably small such that 

m-1-4E1=a,>0 

and summing the formula (5.8) for all 0 d k d n - 1, we get 

(5.9) 

Take WI= 26, = 26, > 1. From (5.9) 

and the conclusion of Theorem 3 follows. 
The following lemma is required to establish the generalized stability of (1.9) with 

s,<;. 

LEMMA 8 [Ill]. If the following conditions hold, 

(i) Ek is a nonnegative function and M, C, and p are nonnegative constants, 

(ii) for any nz < T, if maxO <k +, __ 1 E” d M, then . . 

n-1 
E”<p$cz c Ek, 

k=O 

(iii) E” 6 p < MepCT, 

then for any nz d T, 

Proof of Theorem 4. Take m = 26, > 1 and let M be a positive constant. Assume 
maxo,k,,P, //zlki/ GM, then from (5.9) . . 

M). 
i 

The conclusion follows from Lemma 9. 

Proof of Thedrem 5. Let wk=pNuk and e”k=u:-~~k. From (1.1) and (1.9) 

e”;$J,(Pk+S&, ~~+~~)+J,.(~‘~+6~zw:,p~)+(e”kx~~+fi~z~~,,,)=f~ (5.10) 
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where 

To estimate Ifk\, let tk = kz, and intergrating by parts, 

dtUk - uf = -L jr’+’ * *k (tk+l - 5) iY;u(x, s) ds, 

and 

Similarly 

From (5.3) 

It is easy to show that 

II~2mw~9II d w4l W’.yo,T;HI)) z, 

and 

l/~l~J,(W:3 w”)ll d 4 II4 dqo,-r;ffI)) 2, 

whence 
n-1 l/2 

7 c Ilf”ll” 
k=O 

Also from (5.4) 

lle”Oll G CN-“IUOI~. 
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Finally, apply Theorem 3 or Theorem 4 to (5.10) and get the conclusions of 
Theorem 5 from Lemma 1 and the triangle inequality. 
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